::p_load(maptools, sf, raster, spatstat, tmap) pacman
Hands-on Exercise 4: 1st Order Spatial Point Patterns Analysis Methods
4.1 Overview
Spatial Point Pattern Analysis is the evaluation of the pattern or distribution, of a set of points on a surface. The point can be location of:
- events such as crime, traffic accident and disease onset, or
- business services (coffee and fastfood outlets) or facilities such as childcare and eldercare.
Using appropriate functions of spatstat, this hands-on exercise aims to discover the spatial point processes of childecare centres in Singapore.
The specific questions we would like to answer are as follows:
- are the childcare centres in Singapore randomly distributed throughout the country?
- if the answer is not, then the next logical question is where are the locations with higher concentration of childcare centres?
4.2 The data
To provide answers to the questions above, three data sets will be used. They are:
CHILDCARE
, a point feature data providing both location and attribute information of childcare centres. It was downloaded from Data.gov.sg and is in geojson format.MP14_SUBZONE_WEB_PL
, a polygon feature data providing information of URA 2014 Master Plan Planning Subzone boundary data. It is in ESRI shapefile format. This data set was also downloaded from Data.gov.sg.CostalOutline
, a polygon feature data showing the national boundary of Singapore. It is provided by SLA and is in ESRI shapefile format.
4.3 Installing and Loading the R packages
In this hands-on exercise, five R packages will be used, they are:
- sf, a relatively new R package specially designed to import, manage and process vector-based geospatial data in R.
- spatstat, which has a wide range of useful functions for point pattern analysis. In this hands-on exercise, it will be used to perform 1st- and 2nd-order spatial point patterns analysis and derive kernel density estimation (KDE) layer.
- raster which reads, writes, manipulates, analyses and model of gridded spatial data (i.e. raster). In this hands-on exercise, it will be used to convert image output generate by spatstat into raster format.
- maptools which provides a set of tools for manipulating geographic data. In this hands-on exercise, we mainly use it to convert Spatial objects into ppp format of spatstat.
- tmap which provides functions for plotting cartographic quality static point patterns maps or interactive maps by using leaflet API.
Use the code chunk below to install and launch the five R packages.
4.4 Spatial Data Wrangling
4.4.1 Importing the spatial data
<- st_read("data/child-care-services-geojson.geojson") %>%
childcare_sf st_transform(crs = 3414)
Reading layer `child-care-services-geojson' from data source
`C:\valtyl\IS415-GAA\Hands-on_Ex\Hands-on_Ex04\data\child-care-services-geojson.geojson'
using driver `GeoJSON'
Simple feature collection with 1545 features and 2 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 103.6824 ymin: 1.248403 xmax: 103.9897 ymax: 1.462134
z_range: zmin: 0 zmax: 0
Geodetic CRS: WGS 84
<- st_read(dsn = "data", layer="CostalOutline") sg_sf
Reading layer `CostalOutline' from data source
`C:\valtyl\IS415-GAA\Hands-on_Ex\Hands-on_Ex04\data' using driver `ESRI Shapefile'
Simple feature collection with 60 features and 4 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 2663.926 ymin: 16357.98 xmax: 56047.79 ymax: 50244.03
Projected CRS: SVY21
<- st_read(dsn = "data",
mpsz_sf layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source
`C:\valtyl\IS415-GAA\Hands-on_Ex\Hands-on_Ex04\data' using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
[DIY] Retrieve the referencing system information of these geospatial data
st_crs(childcare_sf)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
st_crs(sg_sf)
Coordinate Reference System:
User input: SVY21
wkt:
PROJCRS["SVY21",
BASEGEOGCRS["SVY21[WGS84]",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]],
ID["EPSG",6326]],
PRIMEM["Greenwich",0,
ANGLEUNIT["Degree",0.0174532925199433]]],
CONVERSION["unnamed",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]]]
st_crs(mpsz_sf)
Coordinate Reference System:
User input: SVY21
wkt:
PROJCRS["SVY21",
BASEGEOGCRS["SVY21[WGS84]",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]],
ID["EPSG",6326]],
PRIMEM["Greenwich",0,
ANGLEUNIT["Degree",0.0174532925199433]]],
CONVERSION["unnamed",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]]]
[DIY] Assign the correct CRS to mpsz_sf and sg_sf simple feature data frames
<- st_transform(sg_sf, crs=3414)
sg_sf_3414 st_crs(sg_sf_3414)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
<- st_transform(mpsz_sf, crs=3414)
mpsz_sf_3414 st_crs(mpsz_sf_3414)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
[DIY] If necessary, change the referencing system to Singapore national projected coordinate system
4.4.2 Mapping the geospatial data sets
After checking the referencing system of each geospatial data data frame, it is also useful for us to plot a map to show their spatial patterns.
tmap_mode("plot")
qtm(childcare_sf)
Notice that all the geospatial layers are within the same map extend. This shows that their referencing system and coordinate values are referred to similar spatial context. This is very important in any geospatial analysis.
Alternatively, we can also prepare a pin map by using the code chunk below.
sf_use_s2(FALSE)
tmap_mode('view')
tm_shape(childcare_sf)+
tm_dots(alpha = 0.5, size=0.01)+
tm_view(set.zoom.limits = c(11,14))
tmap_mode('plot')
Notice that at the interactive mode, tmap is using leaflet for R API. The advantage of this interactive pin map is it allows us to navigate and zoom around the map freely. We can also query the information of each simple feature (i.e. the point) by clicking of them. Last but not least, you can also change the background of the internet map layer. Currently, three internet map layers are provided. They are: ESRI.WorldGrayCanvas, OpenStreetMap, and ESRI.WorldTopoMap. The default is ESRI.WorldGrayCanvas.
Reminder: Always remember to switch back to plot mode after the interactive map. This is because, each interactive mode will consume a connection. You should also avoid displaying ecessive numbers of interactive maps (i.e. not more than 10) in one RMarkdown document when publish on Netlify.
- alpha controls the intensity of the colour, if the value is closer to 1, the colour will be darker. if the value is closer to 0, the colour will be brighter
- tm_dots(): usually used if we don’t assign any value to the dots
- tm_bubbles(): usually used if we want to create proportional bubbles
- set.zoom.limits in tm_view(): to prevent too far zooming in and out
- set.bounds in tm_view(): set boundaries of the map to prevent it from ‘running away’
4.5 Geospatial Data Wrangling
Although simple feature data frame is gaining popularity again sp’s Spatial* classes, there are, however, many geospatial analysis packages require the input geospatial data in sp’s Spatial* classes. In this section, you will learn how to convert simple feature data frame to sp’s Spatial* class.
- 3 steps to converting the simple feature data frame
- need to do this if u r importing the data using sf function & want to use spatstat
- 1) convert to sp’s spatial class 2) convert into generic sp format 3) convert into spatstat’s ppp
4.5.1 Converting sf data frames to sp’s Spatial* class
The code chunk below uses as_Spatial() of sf package to convert the three geospatial data from simple feature data frame to sp’s Spatial* class.
<- as_Spatial(childcare_sf)
childcare <- as_Spatial(mpsz_sf)
mpsz <- as_Spatial(sg_sf) sg
childcare
class : SpatialPointsDataFrame
features : 1545
extent : 11203.01, 45404.24, 25667.6, 49300.88 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
variables : 2
names : Name, Description
min values : kml_1, <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>018989</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>1, MARINA BOULEVARD, #B1 - 01, ONE MARINA BOULEVARD, SINGAPORE 018989</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>THE LITTLE SKOOL-HOUSE INTERNATIONAL PTE. LTD.</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>08F73931F4A691F4</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
max values : kml_999, <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>829646</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>200, PONGGOL SEVENTEENTH AVENUE, SINGAPORE 829646</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>RAFFLES KIDZ @ PUNGGOL PTE LTD</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>379D017BF244B0FA</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
mpsz
class : SpatialPolygonsDataFrame
features : 323
extent : 2667.538, 56396.44, 15748.72, 50256.33 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs
variables : 15
names : OBJECTID, SUBZONE_NO, SUBZONE_N, SUBZONE_C, CA_IND, PLN_AREA_N, PLN_AREA_C, REGION_N, REGION_C, INC_CRC, FMEL_UPD_D, X_ADDR, Y_ADDR, SHAPE_Leng, SHAPE_Area
min values : 1, 1, ADMIRALTY, AMSZ01, N, ANG MO KIO, AM, CENTRAL REGION, CR, 00F5E30B5C9B7AD8, 16409, 5092.8949, 19579.069, 871.554887798, 39437.9352703
max values : 323, 17, YUNNAN, YSSZ09, Y, YISHUN, YS, WEST REGION, WR, FFCCF172717C2EAF, 16409, 50424.7923, 49552.7904, 68083.9364708, 69748298.792
sg
class : SpatialPolygonsDataFrame
features : 60
extent : 2663.926, 56047.79, 16357.98, 50244.03 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs
variables : 4
names : GDO_GID, MSLINK, MAPID, COSTAL_NAM
min values : 1, 1, 0, ISLAND LINK
max values : 60, 67, 0, SINGAPORE - MAIN ISLAND
4.5.2 Converting the Spatial* class into generic sp format
spatstat requires the analytical data in ppp object form. There is no direct way to convert a Spatial* classes into ppp object. We need to convert the Spatial classes* into Spatial object first.
The codes chunk below converts the Spatial* classes into generic sp objects.
<- as(childcare, "SpatialPoints")
childcare_sp <- as(sg, "SpatialPolygons") sg_sp
Next, you should display the sp objects properties as shown below.
childcare_sp
class : SpatialPoints
features : 1545
extent : 11203.01, 45404.24, 25667.6, 49300.88 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
sg_sp
class : SpatialPolygons
features : 60
extent : 2663.926, 56047.79, 16357.98, 50244.03 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs
4.5.3 Converting the generic sp format into spatstat’s ppp format
Now, we will use as.ppp() function of spatstat to convert the spatial data into spatstat’s ppp object format.
<- as(childcare_sp, "ppp")
childcare_ppp childcare_ppp
Planar point pattern: 1545 points
window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
Now, let us plot childcare_ppp and examine the different.
plot(childcare_ppp)
You can take a quick look at the summary statistics of the newly created ppp object by using the code chunk below.
summary(childcare_ppp)
Planar point pattern: 1545 points
Average intensity 1.91145e-06 points per square unit
*Pattern contains duplicated points*
Coordinates are given to 3 decimal places
i.e. rounded to the nearest multiple of 0.001 units
Window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
(34200 x 23630 units)
Window area = 808287000 square units
Notice the warning message about duplicates. In spatial point patterns analysis an issue of significant is the presence of duplicates. The statistical methodology used for spatial point patterns processes is based largely on the assumption that process are simple, that is, that the points cannot be coincident.
4.5.4 Handling duplicated points
We can check the duplication in a ppp object by using the code chunk below.
any(duplicated(childcare_ppp))
[1] TRUE
- usually SG don’t use GPS for points so there are duplicate points. SG uses postal codes and the postal codes are geocoded. SG uses the online geocoding function to retrieve the xy coordinates.
To count the number of co-indicence point, we will use the multiplicity() function as shown in the code chunk below.
multiplicity(childcare_ppp)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
1 1 1 1 1 1 2 1 1 1 3 1 1 1 2 1
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
1 1 1 1 1 2 1 1 1 1 1 1 1 1 3 2
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
1 2 1 1 1 2 2 3 1 5 1 5 1 1 1 2
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
1 1 1 1 1 2 2 1 1 1 1 2 1 4 1 1
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
1 1 1 1 1 1 1 9 1 1 2 1 1 1 1 1
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
1 1 1 5 1 1 1 1 1 2 1 1 2 2 1 1
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
1 1 9 9 1 1 1 1 1 1 1 1 1 1 2 1
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
2 2 2 1 1 1 1 2 1 1 2 1 1 1 2 1
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
1 2 1 1 1 1 1 9 1 4 1 2 1 1 1 1
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
1 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
3 1 1 1 2 1 1 1 3 1 1 3 1 1 1 1
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
1 1 1 1 1 1 1 1 2 2 1 1 1 5 1 1
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
1 9 1 2 2 1 1 1 2 1 1 1 1 1 1 1
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 1
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
1 1 1 1 1 1 1 1 4 1 1 1 1 1 2 1
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 3
1537 1538 1539 1540 1541 1542 1543 1544 1545
1 1 1 1 1 1 2 1 1
If we want to know how many locations have more than one point event, we can use the code chunk below.
sum(multiplicity(childcare_ppp) > 1)
[1] 128
The output shows that there are 128 duplicated point events.
To view the locations of these duplicate point events, we will plot childcare
data by using the code chunk below.
tmap_mode('view')
tm_shape(childcare) +
tm_dots(alpha=0.4,
size=0.05)
tmap_mode('plot')
There are three ways to overcome this problem. The easiest way is to delete the duplicates. But, that will also mean that some useful point events will be lost.
The second solution is use jittering, which will add a small perturbation to the duplicate points so that they do not occupy the exact same space.
The third solution is to make each point “unique” and then attach the duplicates of the points to the patterns as marks, as attributes of the points. Then you would need analytical techniques that take into account these marks.
The code chunk below implements the jittering approach.
<- rjitter(childcare_ppp,
childcare_ppp_jit retry=TRUE,
nsim=1,
drop=TRUE)
- jittering means that you differentiate the duplicate points with a bit of distance to make them different
Check if any duplicated point is in this geospatial data
any(duplicated(childcare_ppp_jit))
[1] FALSE
4.5.5 Creating owin object
When analysing spatial point patterns, it is a good practice to confine the analysis with a geographical area like Singapore boundary. In spatstat, an object called owin is specially designed to represent this polygonal region.
The code chunk below is used to covert sg SpatialPolygon object into owin object of spatstat.
<- as(sg_sp, "owin") sg_owin
The ouput object can be displayed by using plot() function
plot(sg_owin)
and summary() function of Base R
summary(sg_owin)
Window: polygonal boundary
60 separate polygons (no holes)
vertices area relative.area
polygon 1 38 1.56140e+04 2.09e-05
polygon 2 735 4.69093e+06 6.27e-03
polygon 3 49 1.66986e+04 2.23e-05
polygon 4 76 3.12332e+05 4.17e-04
polygon 5 5141 6.36179e+08 8.50e-01
polygon 6 42 5.58317e+04 7.46e-05
polygon 7 67 1.31354e+06 1.75e-03
polygon 8 15 4.46420e+03 5.96e-06
polygon 9 14 5.46674e+03 7.30e-06
polygon 10 37 5.26194e+03 7.03e-06
polygon 11 53 3.44003e+04 4.59e-05
polygon 12 74 5.82234e+04 7.78e-05
polygon 13 69 5.63134e+04 7.52e-05
polygon 14 143 1.45139e+05 1.94e-04
polygon 15 165 3.38736e+05 4.52e-04
polygon 16 130 9.40465e+04 1.26e-04
polygon 17 19 1.80977e+03 2.42e-06
polygon 18 16 2.01046e+03 2.69e-06
polygon 19 93 4.30642e+05 5.75e-04
polygon 20 90 4.15092e+05 5.54e-04
polygon 21 721 1.92795e+06 2.57e-03
polygon 22 330 1.11896e+06 1.49e-03
polygon 23 115 9.28394e+05 1.24e-03
polygon 24 37 1.01705e+04 1.36e-05
polygon 25 25 1.66227e+04 2.22e-05
polygon 26 10 2.14507e+03 2.86e-06
polygon 27 190 2.02489e+05 2.70e-04
polygon 28 175 9.25904e+05 1.24e-03
polygon 29 1993 9.99217e+06 1.33e-02
polygon 30 38 2.42492e+04 3.24e-05
polygon 31 24 6.35239e+03 8.48e-06
polygon 32 53 6.35791e+05 8.49e-04
polygon 33 41 1.60161e+04 2.14e-05
polygon 34 22 2.54368e+03 3.40e-06
polygon 35 30 1.08382e+04 1.45e-05
polygon 36 327 2.16921e+06 2.90e-03
polygon 37 111 6.62927e+05 8.85e-04
polygon 38 90 1.15991e+05 1.55e-04
polygon 39 98 6.26829e+04 8.37e-05
polygon 40 415 3.25384e+06 4.35e-03
polygon 41 222 1.51142e+06 2.02e-03
polygon 42 107 6.33039e+05 8.45e-04
polygon 43 7 2.48299e+03 3.32e-06
polygon 44 17 3.28303e+04 4.38e-05
polygon 45 26 8.34758e+03 1.11e-05
polygon 46 177 4.67446e+05 6.24e-04
polygon 47 16 3.19460e+03 4.27e-06
polygon 48 15 4.87296e+03 6.51e-06
polygon 49 66 1.61841e+04 2.16e-05
polygon 50 149 5.63430e+06 7.53e-03
polygon 51 609 2.62570e+07 3.51e-02
polygon 52 8 7.82256e+03 1.04e-05
polygon 53 976 2.33447e+07 3.12e-02
polygon 54 55 8.25379e+04 1.10e-04
polygon 55 976 2.33447e+07 3.12e-02
polygon 56 61 3.33449e+05 4.45e-04
polygon 57 6 1.68410e+04 2.25e-05
polygon 58 4 9.45963e+03 1.26e-05
polygon 59 46 6.99702e+05 9.35e-04
polygon 60 13 7.00873e+04 9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
(53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414
4.5.6 Combining point events object and owin object
In this last step of geospatial data wrangling, we will extract childcare events that are located within Singapore by using the code chunk below.
= childcare_ppp[sg_owin] childcareSG_ppp
The output object combined both the point and polygon feature in one ppp object class as shown below.
- owin layer helps to confine the boundary to use only those points in the owin map
summary(childcareSG_ppp)
Planar point pattern: 1545 points
Average intensity 2.063463e-06 points per square unit
*Pattern contains duplicated points*
Coordinates are given to 3 decimal places
i.e. rounded to the nearest multiple of 0.001 units
Window: polygonal boundary
60 separate polygons (no holes)
vertices area relative.area
polygon 1 38 1.56140e+04 2.09e-05
polygon 2 735 4.69093e+06 6.27e-03
polygon 3 49 1.66986e+04 2.23e-05
polygon 4 76 3.12332e+05 4.17e-04
polygon 5 5141 6.36179e+08 8.50e-01
polygon 6 42 5.58317e+04 7.46e-05
polygon 7 67 1.31354e+06 1.75e-03
polygon 8 15 4.46420e+03 5.96e-06
polygon 9 14 5.46674e+03 7.30e-06
polygon 10 37 5.26194e+03 7.03e-06
polygon 11 53 3.44003e+04 4.59e-05
polygon 12 74 5.82234e+04 7.78e-05
polygon 13 69 5.63134e+04 7.52e-05
polygon 14 143 1.45139e+05 1.94e-04
polygon 15 165 3.38736e+05 4.52e-04
polygon 16 130 9.40465e+04 1.26e-04
polygon 17 19 1.80977e+03 2.42e-06
polygon 18 16 2.01046e+03 2.69e-06
polygon 19 93 4.30642e+05 5.75e-04
polygon 20 90 4.15092e+05 5.54e-04
polygon 21 721 1.92795e+06 2.57e-03
polygon 22 330 1.11896e+06 1.49e-03
polygon 23 115 9.28394e+05 1.24e-03
polygon 24 37 1.01705e+04 1.36e-05
polygon 25 25 1.66227e+04 2.22e-05
polygon 26 10 2.14507e+03 2.86e-06
polygon 27 190 2.02489e+05 2.70e-04
polygon 28 175 9.25904e+05 1.24e-03
polygon 29 1993 9.99217e+06 1.33e-02
polygon 30 38 2.42492e+04 3.24e-05
polygon 31 24 6.35239e+03 8.48e-06
polygon 32 53 6.35791e+05 8.49e-04
polygon 33 41 1.60161e+04 2.14e-05
polygon 34 22 2.54368e+03 3.40e-06
polygon 35 30 1.08382e+04 1.45e-05
polygon 36 327 2.16921e+06 2.90e-03
polygon 37 111 6.62927e+05 8.85e-04
polygon 38 90 1.15991e+05 1.55e-04
polygon 39 98 6.26829e+04 8.37e-05
polygon 40 415 3.25384e+06 4.35e-03
polygon 41 222 1.51142e+06 2.02e-03
polygon 42 107 6.33039e+05 8.45e-04
polygon 43 7 2.48299e+03 3.32e-06
polygon 44 17 3.28303e+04 4.38e-05
polygon 45 26 8.34758e+03 1.11e-05
polygon 46 177 4.67446e+05 6.24e-04
polygon 47 16 3.19460e+03 4.27e-06
polygon 48 15 4.87296e+03 6.51e-06
polygon 49 66 1.61841e+04 2.16e-05
polygon 50 149 5.63430e+06 7.53e-03
polygon 51 609 2.62570e+07 3.51e-02
polygon 52 8 7.82256e+03 1.04e-05
polygon 53 976 2.33447e+07 3.12e-02
polygon 54 55 8.25379e+04 1.10e-04
polygon 55 976 2.33447e+07 3.12e-02
polygon 56 61 3.33449e+05 4.45e-04
polygon 57 6 1.68410e+04 2.25e-05
polygon 58 4 9.45963e+03 1.26e-05
polygon 59 46 6.99702e+05 9.35e-04
polygon 60 13 7.00873e+04 9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
(53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414
[DIY] Plot the newly derived childcareSG_ppp
plot(childcareSG_ppp)
4.6 First-order Spatial Point Patterns Analysis
In this section, you will learn how to perform first-order SPPA by using spatstat package. The hands-on exercise will focus on:
- deriving kernel density estimation (KDE) layer for visualising and exploring the intensity of point processes,
- performing Confirmatory Spatial Point Patterns Analysis by using Nearest Neighbour statistics.
4.6.1 Kernel Density Estimation
In this section, you will learn how to compute the kernel density estimation (KDE) of childcare services in Singapore.
4.6.1.1 Computing kernel density estimation using automatic bandwidth selection method
The code chunk below computes a kernel density by using the following configurations of density() of spatstat:
- bw.diggle() automatic bandwidth selection method. Other recommended methods are bw.CvL(), bw.scott() or bw.ppl().
- The smoothing kernel used is gaussian, which is the default. Other smoothing methods are: “epanechnikov”, “quartic” or “disc”.
- The intensity estimate is corrected for edge effect bias by using method described by Jones (1993) and Diggle (2010, equation 18.9). The default is FALSE.
<- density(childcareSG_ppp,
kde_childcareSG_bw sigma=bw.diggle,
edge=TRUE,
kernel="gaussian")
The plot() function of Base R is then used to display the kernel density derived.
plot(kde_childcareSG_bw)
The density values of the output range from 0 to 0.000035 which is way too small to comprehend. This is because the default unit of measurement of svy21 is in meter. As a result, the density values computed is in “number of points per square meter”.
Before we move on to next section, it is good to know that you can retrieve the bandwidth used to compute the kde layer by using the code chunk below.
<- bw.diggle(childcareSG_ppp)
bw bw
sigma
298.4095
4.6.1.2 Rescalling KDE values
In the code chunk below, rescale() is used to covert the unit of measurement from meter to kilometer.
- SVY21 uses meter which makes the map units too small to see so we want to convert to km
- write on the map: unit per meter square CHANGED TO unit per kilometer square
<- rescale(childcareSG_ppp, 1000, "km") childcareSG_ppp.km
Now, we can re-run density() using the resale data set and plot the output kde map.
<- density(childcareSG_ppp.km, sigma=bw.diggle, edge=TRUE, kernel="gaussian")
kde_childcareSG.bw plot(kde_childcareSG.bw)
Notice that output image looks identical to the earlier version, the only changes in the data values (refer to the legend).
4.6.2 Working with different automatic badwidth methods
Beside bw.diggle(), there are three other spatstat functions can be used to determine the bandwidth, they are: bw.CvL(), bw.scott(), and bw.ppl().
Let us take a look at the bandwidth return by these automatic bandwidth calculation methods by using the code chunk below.
bw.CvL(childcareSG_ppp.km)
sigma
4.543278
bw.scott(childcareSG_ppp.km)
sigma.x sigma.y
2.224898 1.450966
bw.ppl(childcareSG_ppp.km)
sigma
0.3897114
bw.diggle(childcareSG_ppp.km)
sigma
0.2984095
Baddeley et. (2016) suggested the use of the bw.ppl() algorithm because in ther experience it tends to produce the more appropriate values when the pattern consists predominantly of tight clusters. But they also insist that if the purpose of once study is to detect a single tight cluster in the midst of random noise then the bw.diggle() method seems to work best.
The code chunk beow will be used to compare the output of using bw.diggle and bw.ppl methods.
- ppl method appears to be smoother since the sigma is greater by 100m compared to the diggle method which seems more pixelised
- if you choose a method like diggle, choose the same method again. eg. use diggle for comparing both functional water points and non-functional water points
- location - well distributed, no difference in distribution patterns >> use fixed distance
- location - many residential areas, all the childcare centres will be cluttered >> use adaptive cause the kernel changes
<- density(childcareSG_ppp.km,
kde_childcareSG.ppl sigma=bw.ppl,
edge=TRUE,
kernel="gaussian")
par(mfrow=c(1,2))
plot(kde_childcareSG.bw, main = "bw.diggle")
plot(kde_childcareSG.ppl, main = "bw.ppl")
4.6.3 Working with different kernel methods
By default, the kernel method used in density.ppp() is gaussian. But there are three other options, namely: Epanechnikov, Quartic and Dics.
The code chunk below will be used to compute three more kernel density estimations by using these three kernel function.
par(mfrow=c(2,2))
plot(density(childcareSG_ppp.km,
sigma=bw.ppl,
edge=TRUE,
kernel="gaussian"),
main="Gaussian")
plot(density(childcareSG_ppp.km,
sigma=bw.ppl,
edge=TRUE,
kernel="epanechnikov"),
main="Epanechnikov")
plot(density(childcareSG_ppp.km,
sigma=bw.ppl,
edge=TRUE,
kernel="quartic"),
main="Quartic")
plot(density(childcareSG_ppp.km,
sigma=bw.ppl,
edge=TRUE,
kernel="disc"),
main="Disc")
4.7 Fixed and Adaptive KDE
4.7.1 Computing KDE by using fixed bandwidth
Next, you will compute a KDE layer by defining a bandwidth of 600 meter. Notice that in the code chunk below, the sigma value used is 0.6. This is because the unit of measurement of childcareSG_ppp.km object is in kilometer, hence the 600m is 0.6km.
<- density(childcareSG_ppp.km, sigma=0.6, edge=TRUE, kernel="gaussian")
kde_childcareSG_600 plot(kde_childcareSG_600)
4.7.2 Computing KDE by using adaptive bandwidth
Fixed bandwidth method is very sensitive to highly skew distribution of spatial point patterns over geographical units for example urban versus rural. One way to overcome this problem is by using adaptive bandwidth instead.
In this section, you will learn how to derive adaptive kernel density estimation by using density.adaptive() of spatstat.
- density.adaptive() has attributes
densityVoronoi
(tends to be more pixelised) anddensityAdaptiveKernel
(tends to be smoother)
<- adaptive.density(childcareSG_ppp.km, method="kernel")
kde_childcareSG_adaptive plot(kde_childcareSG_adaptive)
We can compare the fixed and adaptive kernel density estimation outputs by using the code chunk below.
par(mfrow=c(1,2))
plot(kde_childcareSG.bw, main = "Fixed bandwidth")
plot(kde_childcareSG_adaptive, main = "Adaptive bandwidth")
4.7.3 Converting KDE output into grid object
The result is the same, we just convert it so that it is suitable for mapping purposes
- we need to convert to grid object (squarish pixels) because previously the output was an image that does not have coordinates
<- as.SpatialGridDataFrame.im(kde_childcareSG.bw)
gridded_kde_childcareSG_bw spplot(gridded_kde_childcareSG_bw)
4.7.3.1 Converting gridded output into raster
Next, we will convert the gridded kernal density objects into RasterLayer object by using raster() of raster package.
- raster is specially designed to deal with grid outputs
<- raster(gridded_kde_childcareSG_bw) kde_childcareSG_bw_raster
Let us take a look at the properties of kde_childcareSG_bw_raster RasterLayer.
kde_childcareSG_bw_raster
class : RasterLayer
dimensions : 128, 128, 16384 (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348 (x, y)
extent : 2.663926, 56.04779, 16.35798, 50.24403 (xmin, xmax, ymin, ymax)
crs : NA
source : memory
names : v
values : -8.476185e-15, 28.51831 (min, max)
Notice that the crs property is NA.
4.7.3.2 Assigning projection systems
The code chunk below will be used to include the CRS information on kde_childcareSG_bw_raster RasterLayer.
projection(kde_childcareSG_bw_raster) <- CRS("+init=EPSG:3414")
kde_childcareSG_bw_raster
class : RasterLayer
dimensions : 128, 128, 16384 (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348 (x, y)
extent : 2.663926, 56.04779, 16.35798, 50.24403 (xmin, xmax, ymin, ymax)
crs : +init=EPSG:3414
source : memory
names : v
values : -8.476185e-15, 28.51831 (min, max)
Notice that the crs property is completed.
4.7.4 Visualising the output in tmap
Finally, we will display the raster in cartographic quality map using tmap package.
tm_shape(kde_childcareSG_bw_raster) +
tm_raster("v") +
tm_layout(legend.position = c("right", "bottom"), frame = FALSE)
Notice that the raster values are encoded explicitly onto the raster pixel using the values in “v”” field.
4.7.5 Comparing Spatial Point Patterns using KDE
In this section, you will learn how to compare KDE of childcare at Punggol, Tampines, Chua Chu Kang and Jurong West planning areas.
4.7.5.1 Extracting study area
The code chunk below will be used to extract the target planning areas.
= mpsz[mpsz@data$PLN_AREA_N == "PUNGGOL",]
pg = mpsz[mpsz@data$PLN_AREA_N == "TAMPINES",]
tm = mpsz[mpsz@data$PLN_AREA_N == "CHOA CHU KANG",]
ck = mpsz[mpsz@data$PLN_AREA_N == "JURONG WEST",] jw
Plotting target planning areas
par(mfrow=c(2,2))
plot(pg, main = "Punggol")
plot(tm, main = "Tampines")
plot(ck, main = "Choa Chu Kang")
plot(jw, main = "Jurong West")
4.7.5.2 Converting the spatial point data frame into generic sp format
Next, we will convert these SpatialPolygonsDataFrame layers into generic spatialpolygons layers.
= as(pg, "SpatialPolygons")
pg_sp = as(tm, "SpatialPolygons")
tm_sp = as(ck, "SpatialPolygons")
ck_sp = as(jw, "SpatialPolygons") jw_sp
4.7.5.3 Creating owin object
Now, we will convert these SpatialPolygons objects into owin objects that is required by spatstat.
= as(pg_sp, "owin")
pg_owin = as(tm_sp, "owin")
tm_owin = as(ck_sp, "owin")
ck_owin = as(jw_sp, "owin") jw_owin
4.7.5.4 Combining childcare points and the study area
By using the code chunk below, we are able to extract childcare that is within the specific region to do our analysis later on.
= childcare_ppp_jit[pg_owin]
childcare_pg_ppp = childcare_ppp_jit[tm_owin]
childcare_tm_ppp = childcare_ppp_jit[ck_owin]
childcare_ck_ppp = childcare_ppp_jit[jw_owin] childcare_jw_ppp
Next, rescale() function is used to transform the unit of measurement from metre to kilometre.
= rescale(childcare_pg_ppp, 1000, "km")
childcare_pg_ppp.km = rescale(childcare_tm_ppp, 1000, "km")
childcare_tm_ppp.km = rescale(childcare_ck_ppp, 1000, "km")
childcare_ck_ppp.km = rescale(childcare_jw_ppp, 1000, "km") childcare_jw_ppp.km
The code chunk below is used to plot these four study areas and the locations of the childcare centres.
par(mfrow=c(2,2))
plot(childcare_pg_ppp.km, main="Punggol")
plot(childcare_tm_ppp.km, main="Tampines")
plot(childcare_ck_ppp.km, main="Choa Chu Kang")
plot(childcare_jw_ppp.km, main="Jurong West")
4.7.5.5 Computing KDE
The code chunk below will be used to compute the KDE of these four planning area. bw.diggle method is used to derive the bandwidth of each
par(mfrow=c(2,2))
plot(density(childcare_pg_ppp.km,
sigma=bw.diggle,
edge=TRUE,
kernel="gaussian"),
main="Punggol")
plot(density(childcare_tm_ppp.km,
sigma=bw.diggle,
edge=TRUE,
kernel="gaussian"),
main="Tempines")
plot(density(childcare_ck_ppp.km,
sigma=bw.diggle,
edge=TRUE,
kernel="gaussian"),
main="Choa Chu Kang")
plot(density(childcare_jw_ppp.km,
sigma=bw.diggle,
edge=TRUE,
kernel="gaussian"),
main="JUrong West")
4.7.5.6 Computing fixed bandwidth KDE
For comparison purposes, we will use 250m as the bandwidth.
par(mfrow=c(2,2))
plot(density(childcare_ck_ppp.km,
sigma=0.25,
edge=TRUE,
kernel="gaussian"),
main="Chou Chu Kang")
plot(density(childcare_jw_ppp.km,
sigma=0.25,
edge=TRUE,
kernel="gaussian"),
main="JUrong West")
plot(density(childcare_pg_ppp.km,
sigma=0.25,
edge=TRUE,
kernel="gaussian"),
main="Punggol")
plot(density(childcare_tm_ppp.km,
sigma=0.25,
edge=TRUE,
kernel="gaussian"),
main="Tampines")
4.8 Nearest Neighbour Analysis
In this section, we will perform the Clark-Evans test of aggregation for a spatial point pattern by using clarkevans.test() of statspat.
The test hypotheses are:
Ho = The distribution of childcare services are randomly distributed.
H1= The distribution of childcare services are not randomly distributed.
The 95% confident interval will be used.
4.8.1 Testing spatial point patterns using Clark and Evans Test
clarkevans.test(childcareSG_ppp,
correction="none",
clipregion="sg_owin",
alternative=c("clustered"),
nsim=99)
Clark-Evans test
No edge correction
Monte Carlo test based on 99 simulations of CSR with fixed n
data: childcareSG_ppp
R = 0.54756, p-value = 0.01
alternative hypothesis: clustered (R < 1)
What conclusion can you draw from the test result?
- Since p-value = 0.01 < 0.05, we reject the null hypothesis that the spatial point patterns are randomly distributed
- Since R = 0.54756 < 1 (looking at Nearest Neighbour Index), the patterns exhibits clustering
4.8.2 Clark and Evans Test: Choa Chu Kang planning area
In the code chunk below, clarkevans.test() of spatstat is used to performs Clark-Evans test of aggregation for childcare centre in Choa Chu Kang planning area.
clarkevans.test(childcare_ck_ppp,
correction="none",
clipregion=NULL,
alternative=c("two.sided"),
nsim=999)
Clark-Evans test
No edge correction
Monte Carlo test based on 999 simulations of CSR with fixed n
data: childcare_ck_ppp
R = 0.91897, p-value = 0.06
alternative hypothesis: two-sided
4.8.3 Clark and Evans Test: Tampines planning area
In the code chunk below, the similar test is used to analyse the spatial point patterns of childcare centre in Tampines planning area.
clarkevans.test(childcare_tm_ppp,
correction="none",
clipregion=NULL,
alternative=c("two.sided"),
nsim=999)
Clark-Evans test
No edge correction
Monte Carlo test based on 999 simulations of CSR with fixed n
data: childcare_tm_ppp
R = 0.79776, p-value = 0.002
alternative hypothesis: two-sided